

COLE NATIONALE SUPERIEURE D'ARTS ET METIERS UNIVERSITÉ HASSAN II DE CASABLANCA

The 2022 International Conference on Digital Technologies Applications (ICDTA'22)

Leveraging the Automated Machine Learning for Arabic Opinion Mining: A preliminary study on AutoML tools and comparison to human performance

Moncef Garouani^{1,2,3}, Kasun zaysa¹

LISIC Laboratory, Univ. Littoral Cote d'Opale Calais, France
 CCPS Laboratory, ENSAM, University of Hassan II, Casablanca, Morocco
 Informatics Institute of Technology, University of Westminster Colombo, Sri Lanka

 \geq

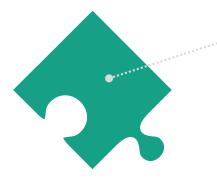
Motivation

With the advent of the web 2.0 and the explosion of data sources such as review platforms, blogs and microblogs, there has been a need to analyze millions of posts, tweets or reviews in order to find out what internet users think.

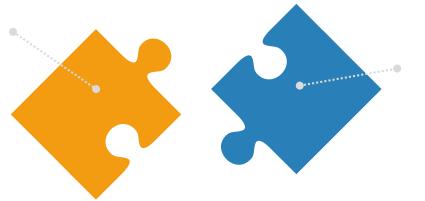
Motivation

Increasing data availability and greater computing capacity have enabled machine learning (ML) to address opining mining.

3- Determining the more adequat ML method or algorithm for the problem at hand is a complex task that requires expert ML knowledge



1- From a machine learning perspective, opinion mining is a technique that uses historical data to create predictive models using textual data to make predictive or classification decisions.



2- There is no ML algorithm that would perform well across all types of textual data.

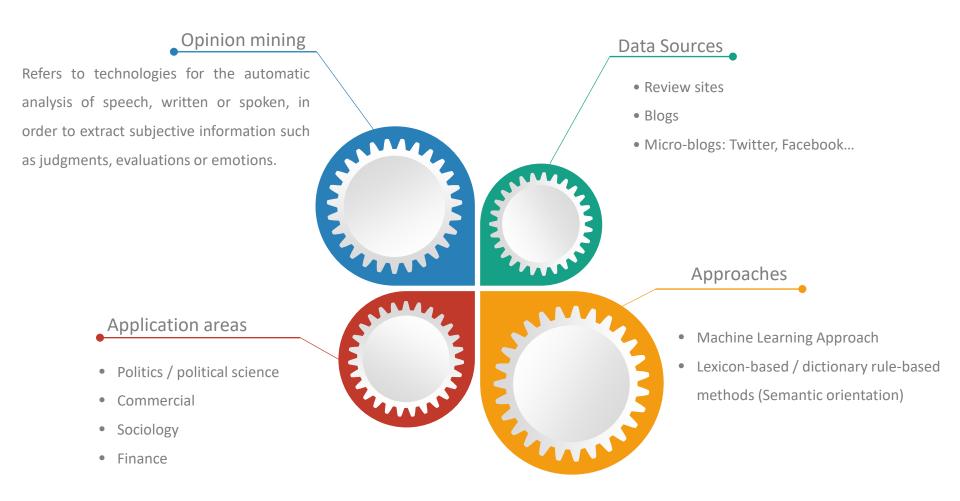
Introduction

Social media

Facebook, Twitter, Instagram, LinkedIn, these social platforms are now part of everyday life. The data aspect of these social media, such as Twitter messages, generates a rich wealth of data about who is involved in communication.

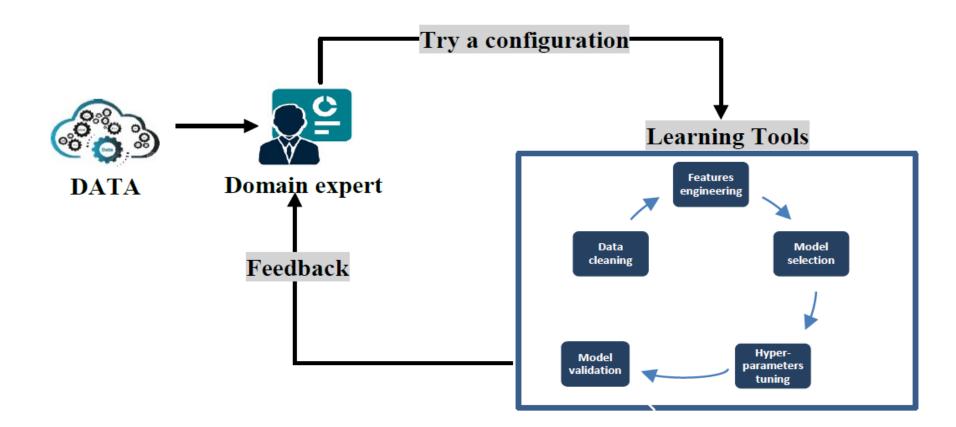
This data plays an important role in decision making for many people and organizations.

Opinion mining



Opinion mining

Algorithms selection problem



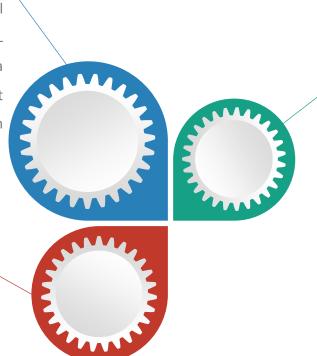
Automated machine learning

AutoML

AutoML aims to find or identify the optimal set of preprocessing techniques, ML algorithms, and HPs to maximize a performance criterion on the data without being specialized in the problem domain where the data comes from.

AutoML tools

- [1] Auto-Sklearn
- [2] TPOT
- [3] AutoWeka
- [4]AMLBID



Application areas

- Educational data analysis
- Health care applications
- Manufacturing industry

[1] M. Feurer et al. Eficient and Robust Automated Machine Learning". In: Proceedings of the 28th International Conference on Neural Information Processing Systems

[2] R. S. Olson and J. H. Moore. TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning". doi: 10.1007/978-3-030-05318-5.

[3] L. Kottho et al. Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA. doi: 10.1007/978-3-030-05318-5.

[4] Garouani, M et al. (2022). AMLBID: An auto-explained Automated Machine Learning tool for Big Industrial Data. In SoftwareX . doi: 10.1016/j.softx.2021.100919

V- Methodology

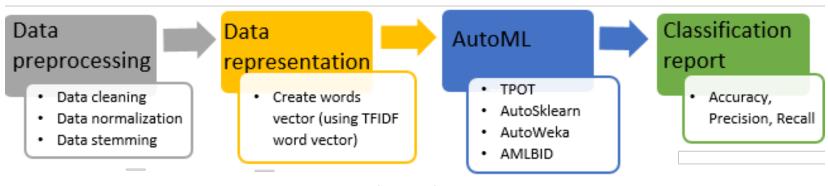


Fig. 1. Evaluation Flow.

V- Methodology

1. Case study and raw data

Dataset	Number of Instances	Number of classes	Arabic
D1	13350	4	Moroccan
D2	49864	2	Algerian
D3	900	2	Jordanian
D4	9901	2	Moroccan
D5	17000	2	Tunisian
D6	510600	3	Egyptian
D7	4462	2	Arabic
D8	66666	3	Arabic
D9	56862	2	Arabic
D10	11751	2	Egyptian

Table 1: Datasets description

V- Methodology

2. Data preparation and representation

All datasets were prepared in such a way that only two columns remained text and target column. In order to do so, a pre-processing stage is done to minimize the effect of text informality on the classification. The pre-processing stage includes **Emojis removal, repeated letters elimination**, Arabic characters **normalization** and finally the **stemming**. For the features representation, we used the **TFIDF** representation.

Analysis evaluation

Dataset .	AutoML results			Human configuration	
	TPOT	Austo-Sklearn	Auto-Weka	AMLBID	results
D1	85.73%	90%	87.07%	91.47%	92.09%
D2	86.71%	65.89%	50.21%	83.91%	86%
D3	81%	79.22%	75.07%	80.62%	$\boldsymbol{86.89\%}$
D4	73.11%	83.91%	80.49%	79.46%	84.33%
D5	86.02%	83.99%	69.21%	89.71%	78%
D6	79.55%	80.36%	68.67%	77%	79.05%
D7	88.51%	83.72%	65%	88.80%	87%
D8	79.30%	80.73%	70.45%	87.03%	91%
D9	53.09%	78.16%	62.51%	73.61%	77%
D10	80.74%	82%	65.23%	86.37%	78%

Table 2. Performance results of each evaluated method.

>

Analysis evaluation

Approche Machine Learning

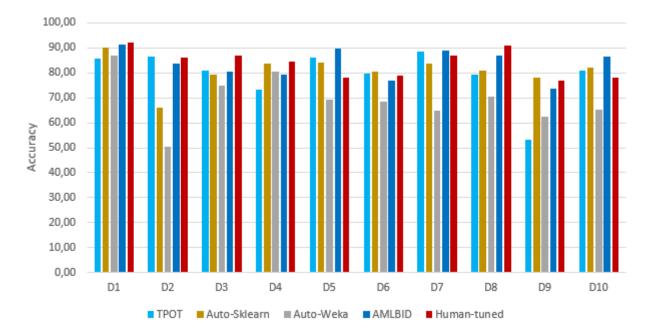
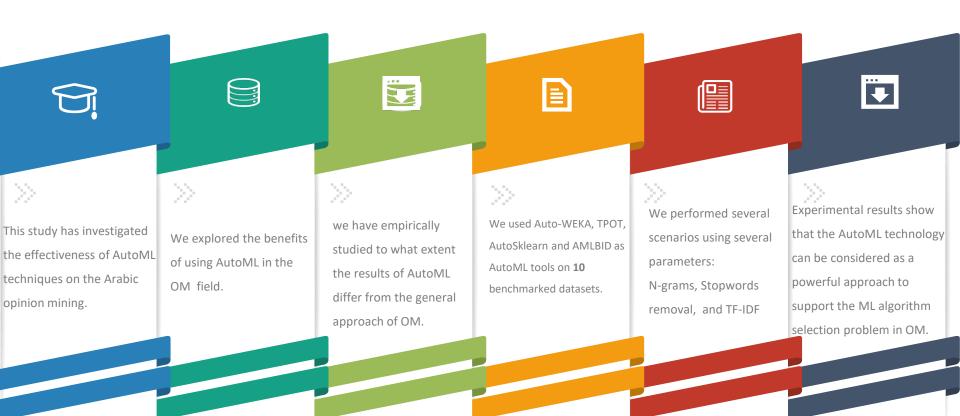


Figure.2. Comparative results of the effectiveness of AutoML over default classic ML configurations and domain expert (Human) configurations.

>

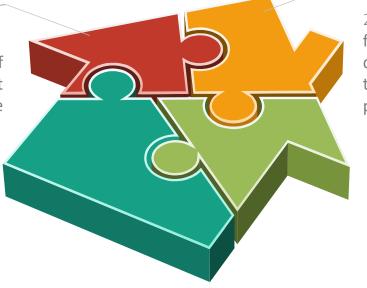
Conclusion



Perspectives \wp

The next planned steps include:

1. Compare the performance of more AutoML tools in deferent opinion mining cases to assess the consistency of the AutoML.



2. Carry out a pre-processing and features importance study to determine what are the attributes of the Arabic text that more influence the performance of AutoML.

THANK YOU FOR YOUR ATTENTION

To your questions

COLE NATIONALE SUPÉRIEURE D'ARTS ET MÉTIERS UNIVERSITÉ HASSAN II DE CASABLANCA

The 2022 International Conference on Digital Technologies Applications (ICDTA'22)

Leveraging the Automated Machine Learning for Arabic Opinion Mining: A preliminary study on AutoML tools and comparison to human performance

Moncef Garouani^{1,2,3} , Kasun zaysa¹

LISIC Laboratory, Univ. Littoral Cote d'Opale Calais, France
 CCPS Laboratory, ENSAM, University of Hassan II, Casablanca, Morocco
 Informatics Institute of Technology, University of Westminster Colombo, Sri Lanka