

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の へ ○ 1/52

Towards Efficient and Explainable Automated Machine Learning Pipelines Design

Moncef GAROUANI

Institut de Recherche en Informatique de Toulouse 26 May 2023

Moncef Garouani Email : mgarouani@gmail.com Website : www.mgarouani.fr Temporary Lecturer and Research Assistant EILCO /ULCO University - LISIC Laboratory

> Slides available at mgarouani.fr/talks \rightarrow IRIT seminar (all references are clickable links)

Outline

1 Context

2 Problem Statement and the State of the art

3 Research work

Towards a Meta-learning based AutoML framework for Industrial big data

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 2/52

- Learning abstract tasks representation
- Towards interactive explainable AutoML
- AMLBID: a self-explainable AutoML software package

4 Conclusion & perspectives

1 Context

2 Problem Statement and the State of the art

3 Research work

- Towards a Meta-learning based AutoML framework for Industrial big data
- Learning abstract tasks representation
- Towards interactive explainable AutoML
- AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

Successes of Machine & Deep learning

Machine Learning solutions in the industry

Advantages

- High predictive accuracy
- + Data-driven, few assumptions

Challenges

- X Various ML algorithms: Which one to choose?
- X Numerous Hyperparameters (categorical, continuous, conditional)

◆□ ▶ < 酉 ▶ < 亘 ▶ < 亘 ▶ Ξ • の Q · 5/52</p>

- X Numerous metrics of performance (Acc, AUC, Recall, etc.)
- X Need high technical expertise in statistics and data science

Machine Learning solutions in the industry

Advantages

- High predictive accuracy
- Data-driven, few assumptions

Challenges

- X Various ML algorithms: Which one to choose?
- X Numerous Hyperparameters (categorical, continuous, conditional)
- X Numerous metrics of performance (Acc, AUC, Recall, etc.)
- X Need high technical expertise in statistics and data science

Accuracy	[Mazumder et al.]	[Tarak <i>et al.</i>]	CNC MTW	[Thiyagu, et al.]
Best ML algorithm	0.93	0.99	0.78	0.97
	Grad. Boosting	DT	SVM	RF
Best Manufacturing Score	0.85	0.98	0.62	0.92

~ No "one-size-fits-all" ML solution for advanced analytics

Developing advanced Analytics : Goal

Make Machine Learning Do the Crafting

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ ○ < ○ 6/52</p>

Developing advanced Analytics: Goal

Brut-force selection of ML methods and design parameters Prohibitively expensive & require technical expertise

Make Machine Learning Do the Crafting

Mission statement

1 Context

2 Problem Statement and the State of the art

3 Research work

- Towards a Meta-learning based AutoML framework for Industrial big data
- Learning abstract tasks representation
- Towards interactive explainable AutoML
- AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

The algorithms selection and configuration problem

Definition : Combined Algorithms selection and Hyperparameters optimization (CASH)

Given :

- a set of algorithms $\mathcal{A} = \{A^{(1)}, \dots, A^{(n)}\}$
- $\mathcal{H}^{(i)}$ the hyperparameters space of $\mathcal{A}^{(i)}i\in 1,\ldots,n$
- a set of training problem instances \mathcal{D} divided on D_{train} and D_{valid}
- a cost metric $\mathcal{L} : A^{(i)} \times H_n \times D \to \mathbb{R}$ assessing the predictive performance of the model induced by the algorithm $A^{(i)}$ with an HP configuration $H_n \in \mathcal{H}^{(i)}$ on the dataset D

Find: $A_{H_*}^{(i)}$ that minimizes or maximizes the \mathcal{L} on \mathcal{D} such that:

 $A_{H*}^{(i)} \in \underset{A^{(i)} \in \mathcal{A}, H \in \mathcal{H}}{\operatorname{argmin}} \mathcal{L}(A_{H}, D_{train}, D_{validation})$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ● ● 8/52

Challenges of the algorithms selection and configuration

- A pool of ML algorithms to be tested
- Loop over all candidate pipelines
- Instantiate and evaluate the ML model based on each pipeline
- Select the best ML model based on the performance

Challenges of the algorithms selection and configuration

- A pool of ML algorithms to be tested
- Operall candidate pipelines
- Instantiate and evaluate the ML model based on each pipeline
- Select the best ML model based on the performance

 \rightsquigarrow It is important to automate the Algorithms selection and configuration process

Automated Machine Learning

Definition: Automated Machine Learning (AutoML)

- Automated machine learning is the process of applying ML models to real-world problems using automation.
- It automates the selection, composition and parameterization of ML models.
- AutoML makes ML techniques accessible to domain scientists who are interested in applying advanced analytic but lack the required expertise.
- This can be seen as a democratization of ML.

Automated Machine Learning

Definition: Automated Machine Learning (AutoML)

- Automated machine learning is the process of applying ML models to real-world problems using automation.
- It automates the selection, composition and parameterization of ML models.
- AutoML makes ML techniques accessible to domain scientists who are interested in applying advanced analytic but lack the required expertise.
- This can be seen as a democratization of ML.

Objectives

- Automatic selection of algorithms
- Automatic tuning of hyperparameters
- Solve the CASH

Benefits

- Reduce the required expertise
- Faster development of algorithms
- Less human time
- Further automation

Problem Statement and the State of the art

AutoML as a CASH problem

AutoML

Given a training set \mathcal{D} and a set of algorithms \mathcal{A} with an associated hyperparameters space \mathcal{H} , the AutoML for the CASH problem is to find the optimal algorithm and hyperparameters space combination $(\mathcal{A}^{(i)}, \mathcal{H}^*)$ that minimize or maximize the coast metric \mathcal{L} evaluated on a validation set $\mathcal{D}_{validation}$. $A_{H*}^{(i)} \in \underset{A^{(i)} \in \mathcal{A}, H \in \mathcal{H}}{\operatorname{argmin}} \mathcal{L}(A_{H}, D_{train}, D_{validation})$

◆□ → ◆□ → ◆ Ξ → ◆ Ξ → ○ ♀ ○ 11/52

AutoML as a CASH problem

AutoML

Given a training set \mathcal{D} and a set of algorithms \mathcal{A} with an associated hyperparameters space \mathcal{H} , the AutoML for the CASH problem is to find the optimal algorithm and hyperparameters space combination $(A^{(i)}, H^*)$ that minimize or maximize the coast metric \mathcal{L} evaluated on a validation set $\mathcal{D}_{validation}$.

$$A_{H*}^{(i)} \in \mathop{argmin}\limits_{A^{(i)} \in \mathcal{A}, H \in \mathcal{H}} \mathcal{L}(A_{H}, D_{train}, D_{validation})$$

How to search?

- Grid & Random search
- Bayesian optimization [AutoSklearn]
- Evolutionary algorithms [TPOT]
- Meta-learning (Largely unexplored)

◆□ → ◆□ → ◆ Ξ → ◆ Ξ → ○ ♀ ○ 11/52

Problem Statement and the State of the art

Grid Search and Random Search

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ♀ 12/52

Problem Statement and the State of the art

Grid Search and Random Search

- Both completely uninformed [Bergstra et al. (2012)]
- Grid search suffers from the curse of dimensionality [Bergstra et al. (2012)]
- Random search handles low intrinsic dimensionality better [Andradóttir et al. (2015)]

Bayesian Optimization

Autosklearn [Feurer et al. (2019, 2020)]

- Start with few (random or guided) HPs configurations
- Repeat until stopping criterion (fixed budget, convergence, etc.)
- Accurate but so expensive and can overfits easily

Problem Statement and the State of the art

Genetic algorithms

Tree-based Pipeline Optimization Tool (TPOT) [Oslon et al. (2016)]

- Start with random pipelines; best of every generation will cross-over or mutate
- Pipelines are represented by a tree of unlimited length and depth
- Accurate but so expensive and could generate invalid individuals

Observations and main ideas

Observations

- Obs 1: We cannot afford to evaluate all configurations $H \in \mathcal{H}$ on all instances $\mathcal{I} \in \mathcal{D}$
- Obs 2: We do not want to waste time on less performing H_n values
- Obs 3: We need enough empirical evidence to distinguish between well performing $(A^{(i)}, H)$
- Obs 4: Algorithms configuration can lead to over-tuning
- Obs 5: If done wrong, waste of time and compute resources

Idea

- Idea 1: Discard less performing (A, H_n) early on
- Idea 2: Transfer knowledge when optimizing on new tasks
- Idea 3: Guide the optimization process

Problem Statement and the State of the art

Towards human-like learning to learn

Humans learn across tasks

Why? Requires less trial-and-error, less data and time

When one learn new skills, (s)he rarely, if ever, starts from scratch.

- Start from skills learned earlier in related tasks.
- Reuses approaches that worked well before, and focuses on what is likely worth trying based on experience.
- With every learned skill, learning new skills becomes easier, requiring fewer examples and less trial-and-error.

In short, we learn how to learn across tasks

Problem Statement and the State of the art

Beyond blackbox optimization

Idea: Based on the assumption "Algorithms show similar performance with the same configuration for similar problems" \rightsquigarrow Take the best configurations from previous runs and try them as initial design on new instances.

◆□ → ◆□ → ◆ Ξ → ◆ Ξ → ○ へ ⁰ 17/52

Problem Statement and the State of the art

Beyond blackbox optimization

Idea: Based on the assumption "Algorithms show similar performance with the same configuration for similar problems" \rightsquigarrow Take the best configurations from previous runs and try them as initial design on new instances.

Problem Statement and the State of the art

Beyond blackbox optimization

Idea: Based on the assumption "Algorithms show similar performance with the same configuration for similar problems" \rightsquigarrow Take the best configurations from previous runs and try them as initial design on new instances.

Problem Statement and the State of the art

Beyond blackbox optimization

Idea : Based on the assumption "Algorithms show similar performance with the same configuration for similar problems" \rightsquigarrow Take the best configurations from previous runs and try them as initial design on new instances.

Problem Statement and the State of the art

Beyond blackbox optimization

Idea: Based on the assumption "Algorithms show similar performance with the same configuration for similar problems" \rightsquigarrow Take the best configurations from previous runs and try them as initial design on new instances.

- Research work

1 Context

2 Problem Statement and the State of the art

3 Research work

- Towards a Meta-learning based AutoML framework for Industrial big data
- Learning abstract tasks representation
- Towards interactive explainable AutoML
- AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

2 Problem Statement and the State of the art

3 Research work

Towards a Meta-learning based AutoML framework for Industrial big data

- Learning abstract tasks representation
- Towards interactive explainable AutoML
- AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

Research work

- Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 20/52

Research work

- Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

- Research work

- Towards a Meta-learning based AutoML framework for Industrial big data

Learning is a never-ending process

Learn more effectively: less trial-and-error, less data, and less time

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · • ○ Q ○ 20/52</p>

- Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning

Source: OBOE [Yang et al., 2019]

We can use meta-learning to generalize across datasets and models by :

- Learning which hyperparameters are really important
- Learning which hyperparameters values should be tried first
- Learning which architectures will most likely work

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning in practice

We need a meta-data repository of relevant prior machine learning experiments to transfer prior knowledge across tasks.

Research work

- Towards a Meta-learning based AutoML framework for Industrial big data

Meta-data

Notation reminder

- m: Meta-features
- A : Learning algorithms
- *H*: Models Hyperparameters

< □ ▶ < 酉 ▶ < ☰ ▶ < ☰ ▶ Ξ ∽ ♀ ♀ _{23/52}

L : Performance estimate of A(H) on the Task j

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

Meta-data

Notation reminder

- m: Meta-features
- A : Learning algorithms
- *H*: Models Hyperparameters
- L: Performance estimate of A(H) on the Task j

But how can we featurize a task (dataset)?
Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Meta-learning

How to measure tasks similarity?

Tasks similarity

- Statistical meta-features that describe tabular datasets [Vanschoren et al. (2018)]
- Task2Vec: task embedding for image data [Achille et al. (2019)]
- Optimal transport : similarity measure based on comparing probability distributions [Alvarez-Meliset al. (2020)]
- Metadata embedding based on textual dataset description [Drori et al. (2019)]
- Dataset2Vec : compares batches of datasets [Jooma et al. (2020)]

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Conceptual description

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

400 CASH scenarios from I4.0 AI domains

Datasets

- 400 real-world classification datasets
- Mix of binary (71%) and multiclass (29%)
- Process, Machine & Supply chain tasks

	Classes	Attributes	Instances
Min Max	2 18	3 71	185 494051

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

- 400 CASH scenarios from I4.0 AI domains
- 41 meta-features

Meta-features

Simple, Statistical & Information Theoretic their purpose is to measure the complexity of the underlying problem.
Model based measures are calculated by inducing a decision tree model on a dataset to get information about the hidden structures of the data.
Landmarking based measures that characterize the predictive problems when basic ML algorithms are performed on them.
Complexity based measures that analyze the complexity of a problem considering the overlap in the attributes values, the separability of the classes, and topological properties.

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

- 400 CASH scenarios from I4.0 AI domains
- 41 meta-features
- 08 target algorithms and their configuration space

ML algorithms

- Support Vector Machines (C, Kernel, coef0, gamma, degree)
- Logistic Regression (C, penalty, fit_intercept)
- Decision Tree (max_features, min_samples_leaf, min_samples_split, criterion)
- Random Forest (bootstrap, max_features, min_samples_leaf /_split, split_criterion)
- Extra Trees (bootstrap, max_features, min_samples_leaf /_split, split_criterion)
- Gradient Boosting (learning_rate, n_estimators, depth, min_samples_leaf /_split)
- AdaBoost (algorithm, n_estimators, learning_rate, max_depth)
- Stochastic Gradient Descent (loss, penalty, learning_rate, l1 ratio, eta0, Power_t)

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

- 400 CASH scenarios from I4.0 AI domains
- 41 meta-features
- 08 target algorithms and their configuration space
- +1000 Hyperparameters configuration

Pipelines generation

- 1000 HPs configurations for every algorithm A over each dataset D
- 8000 pipelines for each dataset
- 10 x 5-fold stratified cross-validation strategy

Research work

Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

AMLBID

- 400 CASH scenarios from I4.0 AI domains
- 41 meta-features
- 08 target algorithms and their configuration space
- +1000 Hyperparameters configuration
- 4.000.000 evaluated pipelines in the KB

Pipelines generation

- 1000 HPs configurations for every algorithm A over each dataset D
- 8000 pipelines for each dataset
- 10 x 5-fold stratified cross-validation strategy

Knowledge base

$$\mathcal{K}_B = \{(m_1, A_{H^1}^{(1)}), \dots, (m_{400}, A_{H^{1000}}^{(n)})\}$$

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

The Meta-model

Recommend the top-performing classification configurations for a combination of an unseen dataset and a classification evaluation measure

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · • ○ Q ○ 27/52</p>

- which? Random Forest
 - k-Nearest Neighbor (kNN)
- Why? of classification type
 - sensitive
 - can handle missing values
 - extensible

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

Prototypical implementation

The Meta-model

Recommend the top-performing classification configurations for a combination of an unseen dataset and a classification evaluation measure

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · • ○ Q ○ 27/52</p>

- which? Random Forest k-Nearest Neighbor (kNN) ✓
- Why? of classification type
 - sensitive
 - can handle missing values
 - extensible

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study

The experimental configuration

Benchmark datasets

- 30 datasets (binary and multiclass classification)
 - OpenML AutoML benchmark [Feurer et al. (2020)]
 - State-of-the-art papers [Garouani et al. (2022b)]

Baseline AutoML tools

- TPOT
 - Default settings (generation and evaluation of 100 pipelines for each dataset)

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · • ○ Q ○ 28/52</p>

Auto-sklearn

- Auto-sklearn(V): Vanilla version (Bayesian optimization)
- Auto-sklearn(E) : Auto-sklearn 2.0 (Ensemble learning)

Research work

- Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study

Experimental results: The recommendations performance

Dataset	AMLBID	ТРОТ	Auto-sklearn(V)	Auto-sklearn(E)	Original paper result
[137]	0.9374	0.9120	0.8215	0.9283	0.8500
[138]	0.9706	0.9517	0.9632	0.9356	0.9500
[139]	0.9941	0.9907	0.9782	0.9900	0.9895
[141]	0.9205	0.9991	0.9357	0.6863	0.9984
[142]	0.8971	0.6711	0.9080	0.9723	0.9677
[143]	0.9706	0.7767	0.6780	0.9843	0.9278
[144]	0.8967	0.8899	0.6783	0.7952	0.8840
[145]	0.8748	0.7826	0.6702	0.7727	0.8659
Wafer-ds	0.8571	0.7312	0.8033	0.8953	-
vehicle	0.8880	0.8415	0.9027	0.6591	-
Cnae-9	0.9671	0.8803	0.7922	0.8365	-
Gas_Sens	0.9739	0.9843	0.9256	0.9468	-
Covertype	0.8344	0.7307	0.7890	0.6521	-
Kc1	0.8793	0.7097	0.7697	0.8552	-
•					
	· .	۰.	·	·	
jannis	0.6719	0.7229	0.6171	0.6845	-
MiniBooNE	0.9645	0.9423	0.8343	0.8903	-
Higgs	0.713	0.726	0.7135	0.729	-
Credi-g	0.7921	0.7188	0.5739	0.6121	-
kr-vs-kp	0.9976	0.9209	0.6532	0.7593	-
car	0.9754	0.9999	0.8549	0.9462	-
albert	0.8759	0.8005	0.8288	0.7981	-
airlines	0.6982	0.6758	0.7094	0.5927	-
Best performance	19	6	2	3	-

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study

Experimental results: The recommendations performance

	•				
Dataset	AMLBID	ТРОТ	Auto-sklearn(V)	Auto-sklearn(E)	Original paper result
[137]	0.9374	0.9120	0.8215	0.9283	0.8500
[138]	0.9706	0.9517	0.9632	0.9356	0.9500
[139]	0.9941	0.9907	0.9782	0.9900	0.9895
[141]	0.9205	0.9991	0.9357	0.6863	0.9984
[142]	0.8971	0.6711	0.9080	0.9723	0.9677
[143]	0.9706	0.7767	0.6780	0.9843	0.9278
[144]	0.8967	0.8899	0.6783	0.7952	0.8840
[145]	0.8748	0.7826	0.6702	0.7727	0.8659
Wafer-ds	0.8571	0.7312	0.8033	0.8953	-
vehicle	0.8880	0.8415	0.9027	0.6591	-
Cnae-9	0.9671	0.8803	0.7922	0.8365	-
Gas_Sens	0.9739	0.9843	0.9256	0.9468	-
Covertype	0.8344	0.7307	0.7890	0.6521	-
Kc1	0.8793	0.7097	0.7697	0.8552	-
		· .	· · .	· · .	
jannis	0.6719	0 7229	0.6171	0 6845	-
MiniBooNE	0.9645	0.9423	0.8343	0.8903	-
Higgs	0.713	0.726	0.7135	0.729	-
Credi-g	0.7921	0.7188	0.5739	0.6121	-
kr-vs-kp	0.9976	0.9209	0.6532	0.7593	-
car	0.9754	0.9999	0.8549	0.9462	-
albert	0.8759	0.8005	0.8288	0.7981	-
airlines	0.6982	0.6758	0.7094	0.5927	-
Best performance	19	6	2	3	-

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study

Experimental results: The recommendations performance

•	•				
Dataset	AMLBID	трот	Auto-sklearn(V)	Auto-sklearn(E)	Original paper result
[137]	0.9374	0.9120	0.8215	0.9283	0.8500 (8.74) A
[138]	0.9706	0.9517	0.9632	0.9356	0.9500 (2.06) A
139	0.9941	0.9907	0.9782	0.9900	0.9895 (0.46) ▲
[141]	0.9205	0.9991	0.9357	0.6863	0.9984 (0.07) ▲
[142]	0.8971	0.6711	0.9080	0.9723	0.9677 (0.46) ▲
[143]	0.9706	0.7767	0.6780	0.9843	0.9278 (4.28) ▲
[144]	0.8967	0.8899	0.6783	0.7952	0.8840 (1.27) ▲
[145]	0.8748	0.7826	0.6702	0.7727	0.8659 (0.89) ▲
Wafer-ds	0.8571	0.7312	0.8033	0.8953	-
vehicle	0.8880	0.8415	0.9027	0.6591	-
Cnae-9	0.9671	0.8803	0.7922	0.8365	-
Gas_Sens	0.9739	0.9843	0.9256	0.9468	-
Covertype	0.8344	0.7307	0.7890	0.6521	-
Kc1	0.8793	0.7097	0.7697	0.8552	-
	·	·.	·.	·.	
Innnia	0.6710	0 7220	0.6171	0.6945	
Jannis MiniRooNE	0.0719	0.1229	0.0171	0.0045	-
	0.9045	0.9423	0.0343	0.0903	-
riggs Cood:	0.715	0.720	0.7135	0.729	-
Credi-g	0.7921	0.7100	0.5759	0.0121	-
kr-vs-kp	0.9970	0.9209	0.0552	0.7595	-
car	0.9754	0.9999	0.8549	0.9462	-
albert	0.8759	0.8005	0.8288	0.7981	-
airiines	0.0982	0.0758	0.7094	0.5927	
Best performance	19	6	2	3	-

Table 1: Comparative performance analysis of AMLBID and the baseline AutoML tools.

Research work

- Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study

Experimental results : The run-time

Dataset	Dataset size	AMLBID	Autosklearn	трот
[137]	959	00:00:05	01:23:47	00:08:14
[138]	2000	00:00:12	01:49:21	00:13:57
[139]	61000	00:05:29	04:19:05	03:42:09
[141]	274627	00:11:43	08:19:37	06:09:51
[142]	5000	00:01:27	02:31:07	01:38:36
[143]	1567	00:00:53	01:33:45	00:19:47
[144]	5388	00:00:57	01:56:50	00:55:51
[145]	1567	00:00:33	00:58:50	00:21:12
Wafer-ds	7306	00:02:17	03:44:26	01:42:21
vehicle	8463	00:02:28	02:12:40	01:45:40
Cnae-9	63260	00:05:47	04:07:39	03:24:52
Gas_Sens	4188	00:01:14	02:47:20	00:42:36
Covertype	25524	00:03:04	01:28:31	01:36:14
Kc1	2108	00:00:38	04:19:26	04:51:02
:	·.	·.	·.	·.
jannis	8641	00:01:41	02:31:07	01:41:51
MiniBooNE	52147	00:04:23	03:59:56	02:11:01
Higgs	110000	00:06:16	07:37:55	05:43:24
Credi-g	30000	00:04:39	02:03:34	05:33:03
kr-vs-kp	3196	00:00:54	01:17:19	00:22:44
car	1728	00:00:38	01:38:30	00:40:07
albert	43824	00:06:27	04:09:17	03:01:03
airlines	5473	00:01:40	02:18:27	00:57:52

Table 2: The run-time of the AMLBID, Autosklearn and TPOT tools on the benchmark datasets.

Research work

L Towards a Meta-learning based AutoML framework for Industrial big data

Empirical study

Experimental results: The run-time

Table 2:	The run-time	of the AMLBID	, Autosklearn and	TPOT	tools on	the benchmark	datasets.
----------	--------------	---------------	-------------------	------	----------	---------------	-----------

Dataset	Dataset size	AMLBID	Autosklearn	TPOT
[137]	959	00:00:05	01:23:47	00:08:14
[138]	2000	00:00:12	01:49:21	00:13:57
[139]	61000	00:05:29	04:19:05	03:42:09
[141]	274627	00:11:43	08:19:37	06:09:51
[142]	5000	00:01:27	02:31:07	01:38:36
[143]	1567	00:00:53	01:33:45	00:19:47
[144]	5388	00:00:57	01:56:50	00:55:51
[145]	1567	00:00:33	00:58:50	00:21:12
Wafer-ds	7306	00:02:17	03:44:26	01:42:21
vehicle	8463	00:02:28	02:12:40	01:45:40
Cnae-9	63260	00:05:47	04:07:39	03:24:52
Gas_Sens	4188	00:01:14	02:47:20	00:42:36
Covertype	25524	00:03:04	01:28:31	01:36:14
Kc1	2108	00:00:38	04:19:26	04:51:02
:	· · .	· · .	· · .	· · .
jannis	8641	00:01:41	02:31:07	01:41:51
MiniBooNE	52147	00:04:23	03:59:56	02:11:01
Higgs	110000	00:06:16	07:37:55	05:43:24
Credi-g	30000	00:04:39	02:03:34	05:33:03
kr-vs-kp	3196	00:00:54	01:17:19	00:22:44
car	1728	00:00:38	01:38:30	00:40:07
albert	43824	00:06:27	04:09:17	03:01:03
airlines	5473	00:01:40	02:18:27	00:57:52

<u>・ロト・ロト・モト・</u> ヨト ヨ のへで _{30/52}

Research work

Learning abstract tasks representation

1 Context

2 Problem Statement and the State of the art

3 Research work

Towards a Meta-learning based AutoML framework for Industrial big data

◆□ → ◆□ → ◆ Ξ → ◆ Ξ → ○ Q ○ 31/52

Learning abstract tasks representation

Towards interactive explainable AutoML

AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

Research work

Learning abstract tasks representation

Meta-learning

- Appropriate data characterization is crucial for the meta-learning
- Proper form of data characterization can guide the process of learning algorithms selection and configuration

- Research work

Learning abstract tasks representation

Data characterization

Hand-designed meta-features

- Simple, Statistical & Info. theoretic
- Landmarking
- Model-based
- Data Complexity

But?

What criteria should we invoke to include or discard a family of meta-features?

Datasets may share identical statistical properties but noticeably they have different data distributions.

わくで 33/52

Research work

Learning abstract tasks representation

Data characterization

Graph-based dataset Representation

- Represents datasets as graphs and then extracts their latent representation.
- Vertices represent the dataset instances
- Edges indicate the existence of a sufficiently high co-occurrence score among them.

[Cohen-Shapira et al. (2019)]

This approach suffers from a computational complexity of $O(V^4)$ where V is the number of vertices in the analyzed graph.

Research work

Learning abstract tasks representation

The AeKNN meta-model with built in data characterization

Research work

Learning abstract tasks representation

The AeKNN meta-model

Algorithm: AeKNN algorithm's pseudo-code.

Input: Train Data, Test Data, KB > KB is the constructed knowledge base **Output**: $P < P_1, P_2, P_3, ..., P_n >$ ▶ Suggested pipelines Learning phase :

- 1: MetaData ← MetaFeaturesExtractor(TrainData)
- 2: AE ← Autoencoder(MetaData)
- 3: EncoderModel ← FeedForwardAEModel(AE)
- 4: LatentMetaFeatures ← EncoderModel(TrainData)
- 5: AeKNN ← KNN(LatentMetaFeatures, KB)

Inferring phase:

- 6: MetaFeatures ← MetaFeaturesExtractor(TestData)
- 7: LatentMetaFeatures ← EncoderModel(MetaFeatures)
- 8: OptimalPiplines ← AeKNN(LatentMetaFeatures, KB)

Research work

Learning abstract tasks representation

AekNN foundations

Autoencoders

Encoder

Z = E(X) that encodes the high dimensional input data $X = \{x_1, x_2, ..., x_n\}$ into a low dimensional hidden representation $Z = \{z_1, z_2, z_m\}$ by an activation function f

Decoder

decoding function X' = D(Z) that produces a reconstruction of the inputs $X' = \{x'_1, x'_2, \dots, x'_n\}$, while minimizing the reconstruction error L(X, X').

 $L(X, X') = -\sum_{i=1}^{n} (x_i \log x'_i) + (1 - x_i) (x_i \log (1 - x'_i))$

- Research work

Learning abstract tasks representation

Experimental study

AeKNN architectures analysis

AeKNN is characterized by the l_i^n parameter that establishes the architecture of the network. This parameter allows the selection of different architectures in terms of depth (number of layers) and number of neurons per layer.

Model	Number of		Numb	Architecture <i>liⁿ</i>			
	hidden layers	L1	L2	Latent layer	L 4	L 5	,
AeKNN1	1	-	-	32	-	-	(32)
AeKNN2	1	-	-	16	-	-	(16)
AeKNN3	1	-	-	8	-	-	(8)
AeKNN4	3	32	-	16	-	32	(32,16,32)
AeKNN5	5	32	16	8	16	32	(32,16,8,16,32)

Table 3: Experimental configurations of AeKNN.

Research work

Learning abstract tasks representation

The AeKNN meta-model

AeKNN architectures analysis

Table 4: Accuracy classification results of the recommended pipelines for the considered AeKNN architectures.

Dataset	AeKNN					
	(32)	(16)	(8)	(32,16,32)	(32,16,8,16,32)	
APSFailure	0.9921	0.9734	0.86475	0.9033	0.8325	
Higgs	0.7283	0.6911	0.4872	0.6398	0.5316	
CustSat	0.8155	0.7826	0.5318	0.8559	0.6943	
car	0.9999	0.9808	0.7049	0.9203	0.8277	
kr-vs-kp	0.9976	0.8130	0.6532	0.7330	0.7291	
airlines	0.6982	0.6833	0.5627	0.7167	0.4334	
vehicle	0.8880	0.8934	0.3591	0.8004	0.4098	
MiniBooNE	0.9645	0.9217	0.8143	0.85	0.7436	
jannis	0.7229	0.6843	0.6371	0.6911	0.6608	
nomao	0.9708	0.9719	0.5395	0.6994	0.4659	
Credi-g	0.7921	0.6502	0.5121	0.3871	0.4768	
Kc1	0.8793	0.8754	0.3597	0.7488	0.5691	
Cnae-9	0.9671	0.8923	0.5622	0.5208	0.6049	
albert	0.8759	0.8131	0.6981	0.8439	0.9053	
Numerai28.6	0.5207	0.4530	0.3029	0.4760	0.2810	
segment	0.9735	0.9622	0.8837	0.9508	0.5791	
Covertype	0.8344	0.7189	0.6521	0.6305	0.4620	
KDDCup	0.9740	0.8514	0.8034	0.8821	0.8572	
shuttle	0.9362	0.9997	0.6429	0.8576	0.6744	
Gas_Sens-uci	0.9843	0.9755	0.7256	0.9667	0.7032	
Best performance	14	3	0	2	<u> </u>	

Research work

Learning abstract tasks representation

The AeKNN meta-model

AeKNN architectures analysis

Table 4: F1-Score classification results of the recommended pipelines for the considered AeKNN architectures.

Dataset			Aeł	KNN	
	(32)	(16)	(8)	(32, 16 ,32)	(32,16,8,16,32)
APSFailure	0.9823	0.7553	0.9875	0.7573	0.9055
Higgs	0.8743	0.5451	0.5602	0.4938	0.5316
CustSat	0.9250	0.6366	0.4953	0.8194	0.5483
car	0.9635	0.9874	0.8144	0.7613	0.6817
kr-vs-kp	0.9246	0.7035	0.6532	0.5870	0.8751
airlines	0.5887	0.7928	0.5992	0.5707	0.3604
vehicle	0.8515	0.8204	0.2131	0.9099	0.3733
MiniBooNE	0.9715	0.9871	0.8873	0.7405	0.8531
jannis	0.7229	0.5748	0.8068	0.6911	0.6006
nomao	0.9343	0.9213	0.5395	0.8454	0.4294
Credi-g	0.9381	0.5772	0.5661	0.4141	0.5863
Kc1	0.9321	0.8389	0.9523	0.8583	0.4596
Cnae-9	0.8962	0.8741	0.6352	0.5938	0.7509
albert	0.8394	0.7036	0.6251	0.8074	0.9783
Numerai28.6	0.3747	0.5260	0.3029	0.4395	0.3540
segment	0.9130	0.8830	0.8837	0.7139	0.5426
Covertype	0.6886	0.6824	0.7249	0.4845	0.4620
KDDCup	0.9571	0.9974	0.7669	0.8386	0.7112
shuttle	0.9653	0.8537	0.4969	0.8306	0.7109
Gas_Sens-uci	0.6161	0.8660	0.9667	0.7667	0.8492
Best performance	8	5	5	_ 1	

𝔄 𝔄 39/52

æ

Research work

Learning abstract tasks representation

The AeKNN meta-model

AeKNN architectures analysis

Table 4: AUC classification results of the recommended pipelines for the considered AeKNN architectures.

Dataset			Ael	KNN	
	(32)	(16)	(8)	(32, 16 ,32)	(32,16,8,16,32)
APSFailure	0.9191	0.9763	0.8648	0.8639	0.7230
Higgs	0.7283	0.8371	0.3412	0.5668	0.5316
CustSat	0.9654	0.6731	0.6413	0.8155	0.7673
car	0.9608	0.9269	0.9873	0.5298	0.6817
kr-vs-kp	0.7765	0.9103	0.6167	0.8790	0.5831
airlines	0.8627	0.5373	0.6357	0.8442	0.5794
vehicle	0.9610	0.8569	0.3956	0.5464	0.5558
MiniBooNE	0.8550	0.9947	0.7873	0.7230	0.5976
jannis	0.7338	0.7229	0.4911	0.6911	0.5383
nomao	0.8594	0.8423	0.8978	0.5899	0.6119
Credi-g	0.9381	0.7232	0.5121	0.4601	0.3308
Kc1	0.7333	0.9119	0.3962	0.6028	0.6421
Cnae-9	0.8941	0.8433	0.4162	0.5938	0.4954
albert	0.9124	0.9226	0.6616	0.7344	0.7593
Numerai28.6	0.6302	0.5435	0.2664	0.3665	0.2080
segment	0.8900	0.8527	0.6548	0.4362	0.4331
Covertype	0.7979	0.6459	0.7981	0.6670	0.4620
KDDCup	0.9876	0.7419	0.9408	0.6587	0.7477
shuttle	0.9727	0.9267	0.7159	0.9306	0.7839
Gas_Sens-uci	0.8748	0.8295	0.7986	0.5572	0.7762
Best performance	11	6	3	0	

Research work

Learning abstract tasks representation

The AeKNN meta-model

AeKNN architectures analysis

It is considered that $l_i{}^n = (32)$ is the best among the considered architectures with a reconstruction error standard deviation of 0.020025

Research work

Learning abstract tasks representation

The AeKNN meta-model

Results of the algorithms selection process

Table 5: Results of RF, XGB, KNN, and AeKNN meta-models for recommending optimal pipelines for test data.

Dataset		Accuracy								
	AeKNN	KNN	XGB	RF						
APSFailure	0.9921 (0.11) ▲	0.9910	0.9673	0.8950						
Higgs	0.7283 (1.53) ▲	0.7130	0.6801	0.6072						
CustSat	0.8155 (4.04) V	0.8559	0.8715	0.7382						
car	0.9999 (2.45) ▲	0.9754	0.9462	0.8549						
kr-vs-kp	0.9985 (0.09) ▲	0.9976	0.7593	0.6532						
airlines	0.7021 (0.39)	0.6982	0.7094	0.5927						
vehicle	0.8952 (0.72)	0.8880	0.9027	0.6591						
MiniBooNE	0.9730 (0.85) ▲	0.9645	0.8903	0.8343						
jannis	0.7229 (5.10) ▲	0.6719	0.6845	0.6171						
nomao	0.9884 (1.76) ▲	0.9708	0.7987	0.6995						
Credi-g	0.8037 (1.16) ▲	0.7921	0.5739	0.6121						
Kc1	0.8905 (1.12) ▲	0.8793	0.7697	0.7097						
Cnae-9	0.9800 (1.29) ▲	0.9671	0.8365	0.7922						
albert	0.8790 (0.31) ▲	0.8759	0.8288	0.7981						
Numerai28.6	0.5591 (3.84) ▲	0.5207	0.4836	0.4229						
segment	0.9867 (1.32) ▲	0.9735	0.9542	0.9337						
Covertype	0.8637 (2.93) ▲	0.8344	0.7890	0.6521						
KDDCup	0.9781 (0.41) ▲	0.9740	0.9331	0.8934						
shuttle	0.9362 (2.87) ▼	0.9649	0.9649	0.8429						
Gas_Sens-uci	0.9843 (1.04) ▲	0.9739	0.9468	0.9256						

Research work

Learning abstract tasks representation

The AeKNN meta-model

Results of latent meta-features extraction

Research work

Learning abstract tasks representation

The AeKNN meta-model

Results of latent meta-features extraction

- Research work

Towards interactive explainable AutoML

1 Context

2 Problem Statement and the State of the art

3 Research work

Towards a Meta-learning based AutoML framework for Industrial big data

- Learning abstract tasks representation
- Towards interactive explainable AutoML
- AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

- Research work

Towards interactive explainable AutoML

AutoML Process

Fully automated ML design can also receive pushback

- Did the AutoML run long enough?
- Did the AutoML miss some suitable models?
- Did the AutoML sufficiently explore the search space?
- Did the recommended configuration over or under fit?
- How to verify results?

Research work

Towards interactive explainable AutoML

Humans and AutoML

Who is using AutoML?

Users without any deep expertise in ML

[Bouthillier *et al.* (2020)] showed that authors of NeurIPS and ICLR papers :

- often optimize their pipelines hyperparameters (> 75%)
- often do it manually and don't use AutoML tools

ML experts & researchers, data scientists

[Crisan *et al.* (2021)] interviewed data scientists and concluded :

- experts don't necessarily trust AutoML
- visualization of results and interaction with processes can help to increase the acceptance of AutoML

Research work

└─ Towards interactive explainable AutoML

Towards Interactive eXplainable AutoML (IXAutoML)

What we are aiming for?

An ideal XAI system should be flexible enough to adapt to the AutoML output (model and data agnostic).

Interpretability

How a prediction is made by the model

Explainability

Why can we learn from the model

Trustworthiness

How trustworthy is the model's prediction

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · • ○ Q ○ 46/52</p>

Research work

Towards interactive explainable AutoML

Towards Interactive eXplainable AutoML (IXAutoML)

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 47/52

Research work

└─ Towards interactive explainable AutoML

Demonstration

Research work

AMLBID : a self-explainable AutoML software package

1 Context

2 Problem Statement and the State of the art

3 Research work

- Towards a Meta-learning based AutoML framework for Industrial big data
- Learning abstract tasks representation
- Towards interactive explainable AutoML
- AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

Research work

AMLBID : a self-explainable AutoML software package

AMLBID: Democratization of explainable machine learning

■ It is open-source (MIT) and trivial to use.

```
i from AMLBID.recommender import AMLBID_Recommender
ifrom AMLBID.explainer import AMLBID_Explainer

4 model,config=AMLBID_Recommender.recommend(Data, metric, mode)
5 model.fit(X_train, Y_train)

7 Explainer = AMLBID_Explainer.explain(model, config, Data)
8 Explainer.dash()
```

Research work

AMLBID : a self-explainable AutoML software package

AMLBID: Democratization of explainable machine learning

- It is open-source (MIT) and trivial to use.
- Downloaded more than 17.753 times on PyPI in its first year.

Research work

AMLBID : a self-explainable AutoML software package

AMLBID: Democratization of explainable machine learning

- It is open-source (MIT) and trivial to use.
- Downloaded more than 17.753 times on PyPI in its first year.
- Multiple industrial requests.

Conclusion & perspectives

1 Context

2 Problem Statement and the State of the art

3 Research work

- Towards a Meta-learning based AutoML framework for Industrial big data
- Learning abstract tasks representation
- Towards interactive explainable AutoML
- AMLBID : a self-explainable AutoML software package

4 Conclusion & perspectives

Conclusion & perspectives

Perspectives

Expand AMLBID

- Support the algorithms of :
 - Regression
 - Deep learning
 - Distributed ML (Spark ML)
- Cover the tasks of:
 - Data pre-processing
 - Features engineering
 - Post-processing analysis
- Enrich the Meta-KB from collaborative ML platforms (Kaggle, OpenML, etc.)
- Explore the inclusion of AutoXAI in the AMLexplainer explanatory artefact
- Explore the use of the constructed knowledge base for further guidance and automation of ML applications